A gel-membrane model of glomerular charge and size selectivity in series.

نویسندگان

  • M Ohlson
  • J Sörensson
  • B Haraldsson
چکیده

We have analyzed glomerular sieving data from humans, rats in vivo, and from isolated perfused rat kidneys (IPK) and present a unifying hypothesis that seems to resolve most of the conflicting results that exist in the literature. Particularly important are the data obtained in the cooled IPK, because they allow a variety of experimental conditions for careful analysis of the glomerular barrier; conditions that never can be obtained in vivo. The data strongly support the classic concept of a negative charge barrier, but separate components seem to be responsible for charge and size selectivity. The new model is composed of a dynamic gel and a more static membrane layer. First, the charged gel structure close to the blood compartment has a charge density of 35-45 meq/l, reducing the concentration of albumin to 5-10% of that in plasma, due to ion-ion interactions. Second, the size-selective structure has numerous functional small pores (radius 45-50 A) and far less frequent large pores (radius 75-115 A), the latter accounting for 1% of the total hydraulic conductance. Both structures are required for the maintenance of an intact glomerular barrier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Charge Modification of Ceramic Membranes Using Copper Nanoparticles for Desalination

Ceramic membranes are considered as alternatives for their polymeric counterparts due to highmechanical strength and thermal resistance; thus long lifetime. Usually, asymmetric ceramicmembranes are synthesized including several layers with different pore size distributionswith the top-layer playing the main separation role. Titania has several properties such asphotocatalytic activity and chemi...

متن کامل

A quantitative analysis of the glomerular charge barrier in the rat.

Modifying the ionic strength (I) is a gentle way to alter charge interactions, but it cannot be done for studies of the glomerular sieving of proteins in vivo. We therefore perfused 18 isolated rat kidneys with albumin solutions of different ionic strengths at a low temperature (cIPK) to inhibit tubular uptake and protease activity. Four anionic proteins were studied, namely albumin (Alb), oros...

متن کامل

Modeling of Nanofiltration for ‎Concentrated Electrolyte Solutions using ‎Linearized Transport Pore Model

   In this study, linearized transport pore model (LTPM) is applied for modeling nanofiltration (NF) membrane separation process. This modeling approach is based on the modified extended Nernst-Planck equation enhanced by Debye-Huckel theory to take into account the variations of activity coefficient especially at high salt concentrations. Rejection of single-salt (NaCl) electrolyte is inve...

متن کامل

Glomerular size and charge selectivity in the mouse after exposure to glucosaminoglycan-degrading enzymes.

This is the first functional study of glomerular size and charge selectivity in mice. The aim was to investigate the controversial issue of glomerular permselectivity in animals exposed to glucosaminoglycan-degrading enzymes, hyaluronidase, and heparinase. Fractional clearances (theta) for FITC-Ficoll and albumin were estimated in isoflurane anesthetized mice in vivo and in cooled isolated perf...

متن کامل

Structural determinants of glomerular permeability.

Recent progress in relating the functional properties of the glomerular capillary wall to its unique structure is reviewed. The fenestrated endothelium, glomerular basement membrane (GBM), and epithelial filtration slits form a series arrangement in which the flow diverges as it enters the GBM from the fenestrae and converges again at the filtration slits. A hydrodynamic model that combines mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 280 3  شماره 

صفحات  -

تاریخ انتشار 2001